
ZKShuffle: Mental Poker on SNARK for Ethereum

zkHoldem

1 Background and Motivation
ZKShuffle is zkHoldem’ implementation of Barnett and Smart’s Mental Poker scheme
[1], which is derived from the seminal work of RSA [2]. ZKShuffle is a framework for
playing card/board games without physical cards and without a trusted third party. For
example, if you build a mental poker framework for a deck of 52 cards, you can almost
write any poker game such as Texas Hold’em using only Solidity. For a comprehensive
overview, we direct the reader to the series of articles published by Geometry [3, 4].

However, Geometry’s implementation [5] requires verifier to run a linear-sized multi-
exponentiation, which is expensive on Ethereum . In this work, we propose a new mental
poker design focusing on reducing gas costs on Ethereum. Technically this design still
follows the design from Barnett and Smart (also the one Geometry uses), the difference
is that we implements the new shuffle argument using Groth16 [6]. This reduces the cost
of each shuffle and decrypt to constant cost of verification on chain (thus also scales to
more players). Now, everyone can play Texas Hold’em and Hearth Stone on Ethereum!

2 ZKShuffle Scheme Overview
At a high level, ZKShuffle can distribute and shuffle a deck of cards privately to each
individual player. And a player can reveal a single card (or a subset of cards) on her
hand when she plays her hand.

Our construction uses Groth16 on a pairing-friendly curve. Thus, we use the notation
G for the group element in the embedded curve (i.e. Baby Jubjub), Fq for the base field
of G, and Fr for the scalar field of G.

Suppose there are k players (P = {p1, · · · , pk}) and a deck of n cards (C = [c1, · · · , cn]).
Our zkShuffle scheme consists of 4 functions:

• Setup: The mental poker scheme provides a generator g : G. Each player pi
generates a random secret key ski : Fr and uses the generator to produce her
public key pki : G where:

pki := ski · g
We also get an aggregated public key:

pk := (sk1 + · · ·+ skk) · g

• shuffle_encrypt: To shuffle a deck of cards, every player needs to take her turn to
call shuffle_encrypt. A player pi takes a deck of cards Ci from previous player, and
then shuffles and encrypts to produce a new deck of card Ci+1. First, let A be a
randomly sampled permutation matrix. pi can produce a deck of shuffled cards:

A · Ci

1

https://zkholdem.xyz/


Figure 1: Shuffle the Deck Intuition

Then, pi randomly sampled a vector Ri : Fn
r , and applied a homomorphic encryp-

tion scheme (ElGamal):

Ci+1 = ElGamal(g, pk,A · Ci, Ri)

By the homomorphic property of ElGamal, one nice property of shuffle_encrypt is,
the order of encryption is irrelevant to the result! After the shuffle and encryption
of the deck, pi posts the produced deck as well as a zero-knowledge proof of the
validity of the shuffle and encryption on chain.

• decrypt: A player pi takes a set of encrypted cards C to make one round of de-
cryption. Let’s ignore the detail now.

• decrypt_post: A player pi takes a set of encrypted cards and calls decrypt. After
decryption, the player posts the decrypted card as well as the validity proof of
decryption on chain.

3 Intuition Behind ZKShuffle and How to Use It
Let’s say Alice, Bob, and Charlie want to play a poker game together. The first step is
that they need to shuffle a deck of encrypted cards together. We require each player to
join the shuffle so that no subset of players can control the sequence of shuffled cards
or encryption. Here, we need to use a homomorphic encryption scheme [7], to ensure
the sequence of encryption and decryption would not affect the final result.

3.1 Shuffle the Deck
To shuffle the deck, we start from a deck of open cards. Then, each player takes turns
calling shuffle_encrypt to randomly shuffle the deck of cards she received and apply the
homomorphic encryption scheme ("add a lock" as shown in Fig. 1). At the end of the
round, we achieve:

1. a deck of shuffled and encrypted cards on chain

2. every player has shuffled the deck once and encrypted each card once

Let’s ask two questions:

Q1. Why every player needs to join the shuffle?

We don’t want to trust anyone. Notice, after the first player, each player only shuffles
the encrypted card deck. Essentially every player contributes to the randomness of the
final deck and unless all players collude, the shuffle is fair.

2



Figure 2: Card Dealing Intuition

Q2. Why do we need homomorphic encryption?

Homomorphic encryption is needed since the order of encryption and decryption is
irrelavent to the end encrypt/decrypt result. We need to leverage this property in the
card dealing (subsection 3.2) part.

3.2 Card Dealing
Card dealing handles 3 cases in the poker game:

• Deal a card from the deck to a single player (say Alice).

• A single player plays one card from her hand.

• Deal a community card

Let’s first look at how to deal with a Card to Alice. Suppose we already have a shuffled
and encrypted deck on chain. And now we are dealing the first card on the deck to
Charlie. Below is the sequence of actions, as illustrated in Fig. 2:

1. Bob calls decrypt_post on the first card, which calls decrypt the first card and
writes it back on chain

2. Charlie calls decrypt_post on the card (notice, now this is the card Bob already
calls decrypt_post), and write it back on chain.

3. Alice fetch the card on chain, and calls decrypt (without writing it back on chain,
otherwise everyone knows). Notice, after 2, only Alice’s encryption (a.k.a. lock)
is left on the card. So Alice can decrypt the card privately in her hand.

Now, suppose Alice wants to play the card just dealt to her from her hand. She reveals
the card and uses zero-knowledge proof to show that this is indeed the card she decrypted
from the encrypted card given to her.

And also dealing community cards is simply a full round of decrypt and the last person
needs to reveal the card on chain!

Let’s also ask three questions about dealing:

Q1. When dealing a card to Alice, what prevents other players or anyone
else from seeing Alice’s card?

For the entire dealing sequence, only Alice can see the plain text after her final decrypt.
Through the process, neither Bob, Charlie, nor blockchain validators can see her card.

Q2. Does the decrypt sequence have to be Bob →Charlie→Alice?

3



No. Thanks to the homomorphic encryption scheme we use, as long as Alice is the last
one to decrypt the card, we are good!

Q3. When Alice plays her hand, what prevents her from cheating (a.k.a.
playing a card that doesn’t belong to her)?

That is why when Alice plays her hand, she cannot just reveal her card, she needs to
submit a zero-knowledge proof to show the validity of her decryption on chain as well.
We will get into details about when and where SNARK is needed in section 4.

4 Where and Why is a SNARK needed?
Both shuffle_encrypt and decrypt_post require the player to generate a zero-knowledge
proof and submit the zero-knowledge proof together with the result.

In shuffle_encrypt, a zero-knowledge proof is needed to prove the validity of the shuffle
and encryption. This is required to guarantee the soundness of the shuffle, for exam-
ple, people don’t put random content in the encrypted cards so that nothing can be
decrypted. For not leaking shuffle order on chain, the proof generated in shuffle_encrypt
needs to be strictly zero-knowledge.

In decrypt_post, a zero-knowledge proof is needed to prove the validity of the decryption.
This prevents from the player posting the wrong decryption results intentionally to gain
an advantage in the game. The proof generated in decrypt_post needs to be zero-
knowledge for not leaking the player’s secret key.

5 Detailed Construction

5.1 El Gamal Encryption
Setup: Given a randomly selected generator g : G and each player’s randomly selected
secret key ski : Fr, we can produce an aggregated public key pk : G

pk = (sk1 + . . .+ skk) · g

Encrypt. This step has the following signature:

Encrypt(g : G, pk : G, m : G×G, r : Fr) → G×G

The output is ciphertext (c1 : G, c2 : G) where

c1 = m[1] + r · g

c2 = m[2] + r · pk

Decrypt. This step has the following signature:

decrypt(sk : Fr, C : G×G) → G

The output is message m where

m = c2 − sk · c1

4



5.2 Shuffle and Remask Argument on SNARK
Permutation Matrix A matrix M is a permutation matrix if

• It is a square matrix. More specifically, supposing there are m rows and n columns,
we have m = n.

• Each element mi,j is either 0 or 1.

• The sum of each row and each column is exactly 1. In other words, we have∑
i

mi,j = 1,∀j ∈ {1, 2, · · · , n}

∑
j

mi,j = 1,∀i ∈ {1, 2, · · · , n}

shuffle_encrypt circuit For a poker game, there is a pre-defined number of cards n.

Given

• Public generator g : G and an aggregated public key pk : G

• Public matrices of masked cards

X = [(x0,0, x0,1), (x1,0, x1,1), · · · , (xn−1,0, xn−1,1)]

Y = [(y0,0, y0,1), (y1,0, y1,1), · · · , (yn−1,0, yn−1,1)]

the prover proves the knowledge of

• Private matrix A of shape n× n

• Private vector of randomness

R = [r0, r1, · · · , rn−1]

such that

• A is a permutation matrix

• B = A×X

• Y = ElGamal.Encryption(g, pk,B,R)

Here, ElGamal.Encrypt(g, pk,B,R) means n ElGamal encryption with individual ri.

Cost Analysis We implement the circuit in Circom, the total R1CS constraint count
is about 170, 000.

decrypt_post circuit Suppose a prover wants to decrypt the ith card value.

Given

• Public generator g : G

• Public masked card yi = (yi,0, yi,1)

• Current player’s public key pki = ski · g

the prover proves the knowledge of

• Current player’s secret key ski

5



such that

• pki = ski · g

• out = yi,1 − ski · yi,0
Cost Analysis We program the circuit in Circom, the decrypt_post circuit consists of
3, 500 R1CS constraints.

6 Acknowledgement
We would like to thank Nicolas Mohnblatt from Geometry for his thorough review and
feedback on the cryptographic construction and this article.

References
[1] A. Barnett and N. P. Smart, “Mental poker revisited,” in IMACC, vol. 2898 of Lecture

Notes in Computer Science, pp. 370–383, Springer, 2003.

[2] A. Shamir, R. L. Rivest, and L. M. Adleman, Mental Poker, pp. 37–43. Boston, MA:
Springer US, 1981.

[3] N. Mohnblatt, A. Novakovic, and K. Gurkan, “Mental poker in
the age of snarks - part 1.” https://geometry.xyz/notebook/
mental-poker-in-the-age-of-snarks-part-1.

[4] N. Mohnblatt, A. Novakovic, and K. Gurkan, “Mental poker in
the age of snarks - part 2.” https://geometry.xyz/notebook/
mental-poker-in-the-age-of-snarks-part-2.

[5] N. Mohnblatt, A. Novakovic, and K. Gurkan, “Geometry research’s mental poker
implementation.” https://github.com/geometryresearch/mental-poker.

[6] J. Groth, “On the size of pairing-based non-interactive arguments,” in EUROCRYPT
(2), vol. 9666 of Lecture Notes in Computer Science, pp. 305–326, Springer, 2016.

[7] Wikipedia, “Homomorphic encryption.” https://en.wikipedia.org/wiki/
Homomorphic_encryption.

6

https://geometry.xyz/notebook/mental-poker-in-the-age-of-snarks-part-1
https://geometry.xyz/notebook/mental-poker-in-the-age-of-snarks-part-1
https://geometry.xyz/notebook/mental-poker-in-the-age-of-snarks-part-2
https://geometry.xyz/notebook/mental-poker-in-the-age-of-snarks-part-2
https://github.com/geometryresearch/mental-poker
https://en.wikipedia.org/wiki/Homo morphic_encryption
https://en.wikipedia.org/wiki/Homo morphic_encryption

	Background and Motivation
	ZKShuffle Scheme Overview
	Intuition Behind ZKShuffle and How to Use It
	Shuffle the Deck
	Card Dealing

	Where and Why is a SNARK needed?
	Detailed Construction
	El Gamal Encryption
	Shuffle and Remask Argument on SNARK

	Acknowledgement

